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Abstract
The intent of this paper is to develop some iekpsufficient criteria for the existence and rbugss of

exponential ¥-dichotomies of linear dynamic system of the formA(t)=A(t)x(t) on time scales. It is more
interesting and more challenging to establish resmgsand sufficient criteria for the existence gp@nential'¥-
dichotomies of dynamic equations on general tinadesc
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Introduction
Exponential ‘Y-dichotomy generalizes the on time scales. It is more interesting and more

concept of hyperbolicity from autonomous to non  challenging to establish necessary and sufficieitérea
autonomous linear systems, has been playing an ever for the existence of exponentiaP-dichotomies of
more important role in the study of non autonomous dynamic equations on general time scales. The nbofe

dynamical systems such as ordinary differential hi . foll In Secti6 introd
equations , difference equations , and dynamic tems this paper Is as follows. In Sectianwe introduce some

on time scales . basic preliminary results on the calculus on tir&es in

In this paper we develop some explicit necessary order to make this paper self-contained. SecBois

and sufficient criteria for the existence of expotial - devoted to establishing explicit necessary andicefit

dichotomies of linear dynamic system of the form criteria for the existence of exponenttitdichotomies
R(O=A®DxX(®) (1.1) for linear dynamic equations on time scales.

Preliminaries

In this section, we give a short overview on soragsidresults on the time scale calculus that apwitant for the
present treatment of exponentigldichotomies on time scales. For the theory of tatales we refer to the original work
by Hilger [5] and to the book by Bohner and Petersgjn [

A Timescale T is a closed subset of R; and exasnplidime scales include N; Z; R, Fuzzy sets €he set Q =

{t OR/Q,0<t <1} are not time scales. Time scales need not neclgseariconnected. In order to overcome this

deficiency, we introduce the notion of jump operatoForward (backward) jump operatos(t)of t for t < sup T
(respectivelyp(t) at t for t >inf T) is given by(t) = inf{s€ T : s >t} ,p(t) = sup{se T : s < t}, for all te T. The graininess
functionp : T — [0,0) is defined by (t) = o (f) — t. Throughout we assume that T has a topotbgt it inherits from the
standard topology on the real number R. The jungraiprss andp allow the classification of points in a time scaldghe
way: If o(t) > t, then the point t is called right scattereshile if p(t) < t, then tis termed left scattered. If t psSuando(t)
=t, then the point ‘ t' is called right dense: Vehif t > inf T andp(t) = t, then we say ‘t’ is left-dense. We say thaT — R
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is rd-continuous provided f is continuous at edghtrdense point of T and has a finite left-sideditl at each left-dense
point of T and will be denoted by Crd.

A function f: T— T is said to be differentiable a1 T* ={T \ (o(t) max{T'), maxt)}
f((a(t) - f(s))

W= g(t)-s

for each €T*. A function F : T— T, with

if lim where €T-{ o(t)} exist and is said to be differentiable on Dyided it is differentiable

t
F* ()=f(t) for all teT* is said to be integrable, f f (T)AT = F(t) — F(S) where F is anti derivative of f and for all s, t

b b
€T. Let f: T— T, and if T=R and a, &T, then f (t)=f () and j f (t)dt = I f (t)At.

If T=Z, then f (t)= Af(t)=Ff(t+1)-f(t) and

b-1
f(k) if a<b

b k=a
jf(t)At: 0 if a=b

a a-1
> f(k if a>b

k=b

If f, g: T— X(X is a Banach space) be differentiabledi't. Then for any two scalars p the mappingo f+ g is
differentiable in t and further we have:

L(afp g '®=af'® + g'® 2. (fa®) =(H')a®+(c®) g*(t)
3. fo(t)) =f(t)+ p (O)FA) 4. (kf(t) = k (1), for any scalar k.
If f is A-differentiable, then f is continuous. Also if tright scattered and f is continuous at t then
flo®)-f@®
w(t)

An n x n-matrix-valued function A(t) on T is calleegressive if | w(t)A(t) is invertible for all tO T. The set of functions

being both regressive and rd-continuous is denoyed
R = R(T) = R(T, R)R(T, R™). The set of all regressive functions defined Tofiorms an Abelian group under the

addition O defined by (pOd q)(t) := p(t) + q(t) H()p(t)g(t) and the additive inverse in this graamiven by © p(t) := -
p()/(A+H(H)p(t) .Givena [l R, the exponential function is defined by

HOE

t
exp( p(r)Aa1) n(®) =0
ep(t,s) = f for s,;tdT
exp(|— Log(L+ OUMAYA  (t)# O
SH®

where Log is the principal logarithm, and has thléofving properties
et )=1,8(t s) =1/ g, ) =e@, (5. 1), @t s)gs. =gt 1, [&( - 9 =pg(-,s).
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In this paper, T is assumed to be unbounded ahw/daow and
9 :=minf[0,00) N T}, T+ :=[8,0) N T,

y :=supu(t) O [0,40) |X]:=sup |xi|, K R
aT, i
We introducing definitions and notation thall be useful in proving the main results. The Hdian norm of an n x1

vector x(t) is defined to be a real valued funtid t and is denoted lﬂ)((t)” = /X" (t)X(t) . The induced norm of an
nxn matrix A is defined to be

| = max|Ax]

Ix=<1
Lety, :T - (0,0),i=1, 2,...n, be rd continuous functions a#ddiag[¥;, ¥,, ------- Pl

Necessary and Sufficient Criteriafor Exponential ¥-Dichotomy
Consider the following linear dynamic etioa on time scales

) = AlX(®) (3.1)
where A R. First, we introduce the notion of exponentatiichotomies on time scales.
Definition 3.1 ([8]). The dynamical systei{8.1)is said to have an exponenti#ldichotomy on T, if there exist a
projection matrix P (i.e., = P) on R and positive constants;nda;,
i =1, 2, such that
| ¥OXOPXHS)YH(S)|< Mie@u (), t,
|YOXO)( - PXHS) Y HS)|< Me@az (S, 1), t<s, 3-2)
where X is a fundamental solution matrix(8f1) and | is the identity matrix. Whe8.2) holds witha; = a, = 0,(3.1)is
said to possess an ordina¥ydichotomy.
Remark 3.1. We can choose an appropriate fundamental soluatenix such that the projections P and |-P cawiitten
as

lk O 0O O
ko ={ (l)< O} lo(n-k) = [0 | } respectively, wherg lis a k x k identity matrix angcis an (n — k) x (n — k)
n—-k
identity matrix. In fact, there exists a nonsingutzatrix B such that P =B, then(3.2) reduces to

| P()X(t) Bl oB™XH(s)¥7(S)|< Me@u (L, S), 5,
| P()X(1) BlomiB X H() P 7H(S)|< M@ 2 (S, 1), t<s.
Let Xq(t) = X(t)B . Then it is easy to show thag ¥ also a fundamental solution matrix.
In addition, we also obtain the following fact(®.2). If x > 0, then for any XJ (0, ] and
a >0, fi(x) :=( 1/x) log(1/(1+x)) is strictly increasing with lim =(x) = -«

—0+
and §(x) := (1/x) log (1 +ox) is strictly decreasing satisfying lim () = a.

—0+

Therefore, for & s, we have
> gt 5)> (L +ay) ™, €< e@qt, s)< (L1 +ay) ©x (3.3)
Lemma 3.1. The dynamical systeif8.1)has an exponentidli-dichotomy on T if the following conditions are iséied:
(i) There exist positive constantsdndo; (i = 1, 2) such that
| POXMPE [< Lie@a (t, S)FP(S)X(S)R |, t=s,
[POXO)( - P)|< L0 w (s, YIF(S)X(s)(I - PE |, t<ss, (3.4)
whereg is an arbitrary n-dimensional vector;
(i) The dynamical syster{8.1) has bounded growth, that is, there exist Kandp > 0 such that
| POXEOXT(S) P(s)|< Key(t, 9), t= 5. (3.5)
The following theorem represents a useful propeftye exponential- dichotomy on time scales.
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Theorem 3.1. If the dynamical systeif8.1) has an exponentidi-dichotomy on [,00) OT for some fixed¢> 9, then it
has also an exponenti#tdichotomy on T+ with the same projection P andghme exponents, a,.
Proof. Choose an & 1 such that K> ga((to, 9). Then we have
| POXH)X (s) P(s)|< Ky for 9 < s, t< t,. To obtain the conclusions, we consider the faitmawo cases:
Case 1: If <s<t,<t, then
| WOXOPX(S) PH(S)|< K WOXA)PX ™ (to) ¥ (to)]
<KiMie@u (t, ) = KiM1€@ w1 (1, S) €041 (S,9) €0 wi(9, bo)
<KM€, (to, 9) €@ u (1, S);
Case 2: If§ <s<t<ty, then
| POXMOPXH(S) WH(S)|< K% | W(to)X(to) PX " (to) W(to) < KMy
<K*Mie, (to, )= K4M1e@u (L, S) @0 w (5,9) €0 w(®, 1)
<K M, (to, 9) €0 (t S).
Therefore,
| POXOPX Y s) P Hs)|<M'1e@au (L, S), 9<s<t, where M; = KAZM,e, (to, 9).
Similarly, we have
| POXOPXHS)PS)| KM, e@up (S, 1), 9<t<s, where M, = N Mg, (to, 9).
Using these theorems we develop some explicit sacgsind sufficient criteria for the linear dynaraguation(3.1) to
have an exponentidl -dichotomy.

Theorem 3.2. Assume that AJ R is bounded. The Linear dynamical syst@ri)has an exponenti#f -dichotomy on T
if and only if there exist positive constants 6 < 1, T > 0 such that any solution x(t)(8f1) satisfies

| POX()| <6 sup Y@x@), T (3.6)
THKT
Proof : Suppose the equati@®.1) has an exponentidl -dichotomy on T, then it follows from Lemma 3.1 thés.4)
holds on T+.
Let x (t) be any solution B8.1)and set
X1(t) = XOPXHOx(D), %(t) = X@®)(I = P)X () x(t), then
X(1) = XOPX(8) x(s) + X(A)(I = P)X7(s) %(s)-
Consider the following two cases:
Case 1: If fP(s)%(s)|= | P(s)x(s)|, then, fort s, we have
|POX®)] > [POXO( - P)XT(8)%(8)] = [FOXOPX(S) %(s)I-
By the second inequality ¢8.4), we have
[ POXE)( = P |> L™, ¥(s)IX(S)(I - P | e (t, s) for t>s>9.
Choosing: = X(s) x(s), for t> s> 9, we obtain
| WOXA)(1 - P)XT(S) %(S)|= L2 [ ¥($)X(8)(I = P)X*(s)%(S) €2 (t. S)
=, xe(s)| &2 (&, 9).

For sufficiently large t, it is easy to show that
['POXO1= L2 €2 (¢, S) [F(s)e(s)| - LeOw (t, S) [F(s)xu(s)]

> (L ep (ts) - Le@u (t S)) [¥(s)e(s)]

>(1/2)(L 2 ex (t, S) — Le@u (t, S)) [F(S)X(S)I.
Case 2: If [P(s)xa(S)|= | P(s)x(S)|, similarly, for s> t> 9, we get
|WOXOI=(L2) (L1 ea (5, 1) — e (S, 1) [¥(S)X(S)|
This means that there exist @< 1 and T > 0 such that
L e+ T,1)-Leeu+T,1)>207,
L e+ T,1) - Le@we+T,1)>20"

Then [PO)X()] <0 | Pox(r)], t=T.
suptl<T

Conversely assume th@.6) holds. We first show that there exists a constanflcsuch that
[PR)xX()| < c|¥(s)x(s)| ford <s<t<s+ T, where x(t) is any nontrivial solution(@f1).
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According to the condition, there exists an N >u6fsthat |A(t)K N for any tOT. It is easy to show thatH(t)X ()X "X(s) |

<ey(t, S)E | for t>s. Leté = P(S)X(SE . Forg <s<t<s+T,
we have [P)X(E | <en(s + T, S)IP(S)X(sE | < €' [#(s)X(s) |, that is,
| P()x(1)| < c|¥(s)x(s)|, where ¢ =€ .
Suppose that x(t) is a nontrivial bounded solutb(3.1).
Set n(s) = sup (t)x(r )| for s> 9, we have
(=

[ P(OX(D)] <0 sup[¥(t)x(t)|<On(s), t>s+T.
THKT

Henceg(s)| =sup  ¥(t)x(t )|, which implies that
S<s+T

| POX()] < c|P(s)X(S)[,9 <s<t <o,
fs+nT<t<s+ (n+1)T,then

| WX <0"sup  ()x(t)| < 0"c|¥(s)X(s)|< 07%co I | w(s)x(s)].
THNT

Set K =6~'c anda = —(1/T) log#. Then we get
| P(O)x(1)] < Ne ) ¥(s)x(s)|< Ne@(t, S)|¥(S) X(S)|, 9<s<t<c.

Carrying out arguments similar to those in Propasi2.1 in B], it is easily show that there exists a9 such that

| Y()x(1)] < Ne@., (s, H)|¥(s)x(s)| for T <t<s <.

Since A is bounded, thgB.1)has¥ -bounded growth. Frorhemma 3.1land Theorem3.1, The equati(l) has an

exponential¥ -dichotomy onT+.

Now we discuss thetielaship between the exponenti#éd dichotomy of the linear dynamic equation
(3.1)and the¥- bounded solutions of the inhomogeneous lineaesysorresponding t8.1). Some necessary and

sufficient conditions are derived f@3.1)to have an exponentif#l-dichotomy.

Consider the following inhomogeneous linear dynaegjaation on time scales

) = AW + £ (1)

where A0 R, fO Cqy(T).
Define

G ={f O Cq(T) : If I cy=sup YOF O},
toT?

Dy =1 fOCrg (I'):||f||Dw = [l (@) f (n)n1|
9

toTt

here G, Dy and g are all the Banach spaces.
t+w

t+w
f OCrq (T):|f]| Ey =supa% j|¢(r)f(r)Ar| whereTis w- periodicwith w >0
t

Lemma 3.2. If gO0Ey is a non-negative function Wiﬂ%— .[z//(r)g(r)Ar <Ko for all t=4,then
w

t
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t
[eoa1(t, o()w(r)9(r)AT <
1%

Kow(l+apy)
1-egq, @+ w?)

Kow
1-egq, (F+wd)

[eoa2(@(@).w(r)g(r)AT <
t

hold foray, a, > 0 and & 9.

The following lemma will be very useful. We firstssume that Uis the subspace of'Ronsisting of the initial values of all
V- bounded solutions @8.1), and U is any fixed subspace of Rupplementary to Usuch that Rcan be written as the
direct sum

R"= Ui U,

Lemma 3.3. If (3.7) has a¥- bounded solution for fl By, where B, denotes any one of the Banach spacedg and E
then there exists a positive constan{ gich that, for every

f O By, the unique?- bounded solution z(t) ¢B.7)with z(3) O U, satisfies

1l cy < rgl f Igy.

Theorem 3.3. Assume that AT R is bounded. The(B.1) has an ordinary’ -dichotomy on T if and only if(3.7) has at
least onel -bounded solution for everyd Dy.

Proof: Assume tha(3.1) has an ordinary’ -dichotomy on T. Then it is easy to show that

t I
X0 = [OXOPX o) T OAT-[pOXO( -P)X Xoe)f@ar  (@38)
1% t

is a solution of3.7)and [¥(t) x(t)| < max{Mi, Mz}l f Ipy for all t OT".
Conversely suppose th@.7) has at least on# -bounded solution for everyiDy. Set

-1
Ht,s) = WEHXE)X (s) fort >s=> 9

—OX O -P)X L(s)fors>t >
where X(t) is a fundamental solution matrix(8f1)with X(9) = I.

o0

Letz(t) = jH (t,o(t)) f(r)Ar. For a fixed { 0T+, choose a functiond Dy which vanishes forz t;. Since
g

ty
@(t)z(t) :z//(t)X(t)Pj X Yo f(nart=y

9
and
ty ty
2(8)=~(1 -P) [ X o) t()ar DU then z(t) = [H(t o®)f(r)Az.is ¥ -bounded solution of (3.7). By Lemma 3.3,
9 9

we have||z||C <r|f] Dy .For any fixed point §T".

we have three cases as in the following: (1)rigtg-dense; (2) s is both right-scattered anddeéittered; (3) s is right-
scattered and left-dense.

Then
| ¥ (t)X(t)PX'l(s) ¥ '1(s NZ oy (1 +ylAlcy ) fort>s,
[ ()X - P)X‘l(s)‘If '1(s )< row (1 +ylAlc ¢) for s <t. (3.9)

From the continuity of¥ (t)X(t), it follows that(3.9)is also valid for s = t.

Theorem 3.4. Assume tha¢3.1) has¥-bounded growth. Thef8.1) has an exponenti&l -dichotomy on T if and only if
(3.7) has at least on#-bounded solution for every(d Cy.

Proof: Assume that3.1) has an exponentidt-dichotomy on T. Then(3.8)is a solution o{3.7) and
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WX -P)X Ha(m)ar)

t 0
woxol=|tlc,, [ ‘z//(t)x (PX _1(J(r))‘Ar +f
J t
t 0
<|f ||C¢, (M 11£e@al(t, a(1)AT+M 3 [egqa2(0(r),HAT )
t

M1@+a1x) . M

ai az
Conversely suppose thi.7) has at least on#-bounded solution for every functiorif Cy. For a fixed 0 T*, choose a
rd-continuous functiom such that < n(t) <1 for all t>$ and
n (t) = 0 for t>q. Set f (t) =n (Ox(t)| ¥ (O)x(B)[*, where¥ (t)x(t) =¥ ()X()E is any nontrivial solution of3.7). Clearly! f
lcy < 1. Implies

<l

q
[HE Dx@x@w( tarsic, for 9s<tgsq and t29
to
If g=t for t=t, then

t
lex®PE [v@x@Pd tarsic for tztgzs (3.10)
to

q
le®X @)1 - P)é| f lw(@X()(1-PY Tacs rc for txtg=3
Replacingﬁ by F¢ or (I-P), we get

f lw@X()Pg~ At<e@r Ls) f lw@X()Pg~ At for t2 s>t (3.11)
to to

q q

[v@x@a-PY tarseard s [lv@x@(-PY A7 for tss<q

S t

According to the condition(3.1) has¥-bounded growth, then there exist &K and & > 0 such that ()X ()X (s) ¥
Ys)|< Keg (t, s) for t>s. Assume that x is any solution(8f1) and let x(t) = X(OPXHs)x(s), %(t) = X(®)(I -
P)XX(s)x(s).

Next we show that |§)| < ex|x(s)| @@ ¢ (t, S) for s<t < oo if | W(t)xy(t)| < K| ¥(s)X(S)| for some fixeds9 and s<t<s +
lc.

Let t*=inf{t DT /t>s+Ic} since x is a solution of (3.1) then x(tYt)X(t) & Replacingdby s and s by t* in the first
inequality of (3.11), we obtain

t

Klw(S)X(S)I
By the first |nequal|ty of (3.10), we have

+

f (@)% (1)~ Ar<e ! (t, s)j|<,1/(r)x1(r)| Iar s+ rc.

t
@)= e ([ (x| " an ™ sek [pex(s)eg, 2t tzstrc
S
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Note that

G)rgl(t—s)

eerél(t,s)ze 2L s<t<s+rc

This implies that
WX ®|seklpex(sleg 2 (s) sst<o  (312)

Similarly, if | P(t)x(t)| < K| ¥(s)x(s)| for some fixed>s? and max{J ,s-ic}<t<s. we have

|x2 (1) < ek |x(s)|e@rc-1 Gt), d<st<s (3.13)
Replacing: by X(s) ¥(s) &€ and putting+> « in the second inequality of (3.11),we get

\w(t)xa)(l -P)x Lo L)

sre([wox@x How ejan™
S

srC[K_1|£|_1J'elg(s, narlL, s
s

Sinceé is an arbitrary, we obtain

wOXO1 -P)X Ly L) < re K, t<s
similarly

wOXO0 -P)X X (9| srcMept.9)t2s
then

wOXOPX 9w (s

< (1+rC,8)Keﬁ(t,s),tzs

Let t=s, then by the first inequality of (3.11), we have

\w(t)xa) Px 9w H9) < reAKlL-eg 5t 91 Ltz s

Now we consider the two cases

(DAsin [3] If y=0, then‘w(t)X(t)PX Ly s\ < a+2cpK t2s
(2)If x >0,it follows from (3.3)that

\w(t)xa)Px‘l(s)w‘l(si < chKll-((1+—1ﬁ)()) tshd tss

Then we get
‘w(t)x(t)Px—l(s)w‘l(s)( <rcK(1+Br)eg (ts)< K(1+rc B)eP (t5)

<K@+rep)eX.
Hence we have

http: // www.ijesrt.com  (C) International Journal of Engineering Sciences & Research Technology
[2240-2248]



ISSN: 2277-9655
Impact Factor: 1.852

[Rao, 2(9): September, 2013]

reK(L+ )
X

‘w(t)xa)Px‘l(s)q/‘l(s)( < max{ K(1+rcB)ePX } t>s

Define
@+2rc K if x=0.

N(x) = max{ M K(+rcpeX } ity >0.

Then
1 -1
VOXOPX (S (S’( SNG) for 125y fows from(3.12) and(3.13) that

\u(t)X(t)Px‘l(s)\V—l(s* Sen(p)egd (L) for 2529,

wOX O -P)x‘l(s)q;‘l(s)( SercKeg 1 (s for sztz.

This implies that (3.1) has an exponentiakdichotomy on T.
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